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Deep Correlation Feature Learning for
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Abstract— Convolutional neural networks (CNNs) commonly
uses the softmax loss function as the supervision signal. In
order to enhance the discriminative power of the deeply learned
features, this paper proposes a new supervision signal, called cor-
relation loss, for face verification task. Specifically, the correlation
loss encourages the large correlation between the deep feature
vectors and their corresponding weight vectors in softmax loss.
With the joint supervision of softmax loss and correlation loss,
the deep correlation feature learning (DCFL) network can learn
the deep features with both the inter-class separability and the
intra-class compactness, which are highly discriminative for face
verification. More importantly, by applying the weight vector of
softmax function as the class prototype, the proposed correlation
loss function is easy to be optimized during the backpropatation
of CNN. Finally, the DCFL method achieves 99.55% and 96.06%
face verification accuracy using a 64-layer ResNet on the LFW
and YTF benchmark, respectively.

Index Terms— Face Verification, Feature Learning, Convolu-
tional neural networks, Softmax, Deep Learning.

I. INTRODUCTION

Recently, the deep methods, typically characterized by con-
volutional Neural Networks (CNNs), have become popular
in the computer vision community. Given large quantities of
training data, CNN feature extractor is a learnable function
obtained by composing several linear and non-linear operators,
significantly improving the state of the art in many comput-
er vision tasks. In generic object recognition, softmax loss
function, adopted by the seminal AlexNet [1] and VGGNet
[2], is sufficient to learn the separable feature and predict
the class label. For the face recognition, however, in order to
identity new unseen classes without re-training, deep learning
is required to consider both the separability and the discrim-
inatory ability of the feature. The discriminative power of
features is characterized by the compact intra-class variations
[3][4][5] and the large between-class margins [6][7], by which
the image pairs from unseen classes can be verified without re-
training the model. In this sense, the softmax loss, which only
encourages the class separability of features, is not sufficient
for face verification.

The first representative system of deep methods is Deep-
face [8], which applied a siamese network to learn the face
descriptor by minimising the distance between intra-class pairs
of faces and maximizing the distance of the inter-class image
pairs. The DeepFace was extended by the DeepID series [9] by
jointly learning of the identification signal, i.e. softmax loss,
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Fig. 1. The distribution of deeply learned features by (a) Softmax loss (b)
discriminative softmax loss. One can observe that: i) under the supervision
of softmax loss, the deeply learned features are separable but not discrimi-
native, and ii) under the supervision of discriminative softmax loss the deep
features are discriminative, showing enlarged the margins between classes by
enhancing the intra-class correlation.

and the verification loss, i.e. the contractive loss. VGG-face
network [10] is appended with a metric learning procedure
to enhance the discriminative ability of the CNN feature. The
FaceNet [11] achieved better performance by a single network
using a massive dataset of 200 million face identities and 800
million image face pairs to train a CNN with a triplet-based
loss, where a pair of two within-class images and a third
between-class image are compared. Although these methods
demonstrate improvement over conventional softmax loss, the
tricky selection of the image pairs or triplets significantly
increases the computational complexity and makes the training
procedure become inconvenient.

In this paper, we propose a new loss function, namely
correlation loss, to effective enhance the discriminative power
of the deep convolutional neural network. Specifically, we
define the class direction as the weight vector of softmax
function for each class. In the course of training, we max-
imize the correlation between the deep features and their
corresponding class direction. The Deep Correlation Feature
Learning (DCFL) method trains the CNN under the joint
supervision of the softmax loss and correlation loss, with
a hyper parameter to balance the two supervision signals.
Intuitively, as illustrated in Fig. 1, the softmax loss forces
the deep features of different classes to stay apart, while
the additional correlation loss efficiently pulls the samples
to be coincident with corresponding class directions. The
joint supervision of the softmax loss and the correlation loss
effectively enlarges the margins among different classes, and
thus enhances the discriminative power of the deeply learned
features.
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Our DCFL network has been successfully tested on the
LFW and YTF benchmarks. Empirical results validate that
DCFL network can significantly improve the verification
accuracy of the widely used CNNs with contractive loss
and the center loss, when using the same architecture and
training dataset. In particular, the proposed DCFL network
achieves 99.55% and 96.06% face verification accuracy by a
single ResNet on the LFW and YTF benchmarks, respectively.
Compared to the state-of-the-art performance, the accuracy
achieved by the proposed DCFL (using much less training im-
ages) is consistently among the top-ranked sets of approaches.

II. RELATED WORKS

Face verification task aims to determine whether a given
pair of face images or videos is from the same person or
not. Face verification in the wild means that face images
contain unconstrained variations caused by varying lighting,
expression, pose, resolution, and background. Recently, many
effective approaches for face verification in the wild have been
proosed, which can be roughly divided into two categories:
feature learning-based and metric learning-based. By directly
extracting the discriminative information from the image,
feature learning methods are demonstrated to be more effective
to address the unconstrained image variations. As evidence,
deep feature learning methods have achieved state-of-the-art
performance for face verification in the wild [8][9][10][11].

State-of-the-art methods are mostly based on the deep
convolutional neural network, which are commonly supervised
by K-way softmax layer, to classify each image into one of
the K candidate identified [8][9] with the cross-entropy loss
function. Denoting the i-th input sample xi with the label yi,
the softmax loss can be written as

LS =
1

N

∑
i

−log

(
efyi∑
j e
fj

)
(1)

where fj denotes the j-th element (j = 1 . . .K, K is the
number of classes) of the class-wise score vector f , and the
N is the number of the training samples. In the softmax loss,
f is the activation of a fully connected layer W , and fyi can
be represented as fyi = WT

yixi + byi where Wyi is the yi-th
column of W and byi is the corresponding bias term.

Unfortunately, the softmax loss by itself is not sufficient
to learn the discriminative features, and two strategies are
commonly applied. The first strategy is to learn a discrimi-
native metric embedding of the deep features for enhanced
verification performance, as in the famous VGG-face method
[10]. The other popular strategy is to train the network by
joint identification-verification signal. The verification signal
encourages the sample pairs of the same subject to be closer,
and at the same time, the sample pairs from different sub-
jects become far apart, as in the DeepID2 method [12]. The
common loss function is

LC =

{
1
2‖xi − xj‖

2 if yij = 1
1
2 max(0,m− ‖xi − xj‖)2 if yij = −1

(2)

where xi and xj are the deep feature vectors extracted from
a pair of images. yij = 1 means that xi and xj are from the
same identity, where the L2 distance between the deep feature

vectors is minimized. yij = −1 means different identity, where
the distance between deep feature vectors is required to be
larger than a margin m.

To avoid the difficulty in the pair selection of the contractive
loss, a recent approach [13] introduced a simple, but effective,
center loss to learn better discriminative face features as
follows.

LC =
1

2

∑
i

‖xi − cyi‖22 (3)

where cyi denotes the yith class center of deep features. Al-
though the center loss significantly reduces training difficulty
of contractive loss, the dynamic update of the class centers for
each mini-batch possibly makes the model training become
unstable. Our work aims to address this limitation by defining
the class prototype as a stable class-wise direction vector
associated with the softmax loss function.

III. THE PROPOSED APPROACH

This section introduces the deep correlation feature learning,
which applies a novel loss function, called correlation loss, to
enhance the discriminative power of the deep features learned
by the deep ResNet [14].

A. Deep Correlation Feature Learning (DCFL)

Many studies [15][16][17] showed that correlation metric-
based similarity measurement outperforms the conventional
Euclidean distance for face recognition task, but the optimality
of the objective functions for most classical feature-learning
algorithms relies on the Euclidean distance. To this end, we
have two following observations.

First, the commonly used softmax loss tends to minimize
the inter-class correlation. By omitting the bias term with
trivial effect, Liu et al. [18] recently casted a novel view on
generalizing the original softmax loss by formulating fi =
‖Wj‖‖xi‖cos(θj) where θj is the angle between the vector
Wj and xi. The softmax loss function becomes

LS ≈
1

N

∑
i

−log

(
e‖Wyi

‖‖xi‖cos(θyi )∑
j e

‖Wj‖‖xi‖cos(θj)

)
(4)

From the aspect of feature learning, softmax loss derives the
deep feature xi to be correlated with the Wyi and uncorre-
lated with the other vectors Wj for any j 6= yi. Therefore,
minimization of softmax loss helps to enlarge the inter-class
correlation of the deep feature vectors.

Second, the intra-class correlation can be naturally maxi-
mized by a new loss function term, i.e. the correlation loss.
To avoid the difficulty on updating the class prototype for
each mini-batch, we directly apply the weight vector Wyi in
softmax loss as the “prototype” of each class. In this manner,
the intra-class correlation loss function is naturally formulated
as follows.

LC = −
∑
i

cos(θyi) = −
∑
i

WT
yixi

‖Wyi‖‖xi‖
(5)
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According to the equation of the derivatives of vector norm,
the gradient of LC with respect to xi is computed as:

∂LC
∂xi

=
∑
i

Wyi −
WT
yixi

‖xi‖2
xi (6)

Compared with the recently proposed center-loss [13], our
correlation loss is easier to be optimized because it naturally
applies the weight vector Wyi as the prototype to avoid the
unstable update of the class prototype.

Based on the above two observations, we propose the
deep correlation feature learning method that adopts the joint
supervision of softmax loss and correlation loss to train the
CNNs for discriminative feature learning. The formulation is
given as follows.

L = LS + λLC
= −

∑
i log

e
WT

yi
xi+byi∑

j e
WT

j
xi+bj

− λ
∑
i

WT
yi
xi

‖Wyi
‖‖xi‖

(7)

where the hyper-parameter λ balances the importance of the
two losses. The softmax loss globally forces the deep features
of different classes to stay apart, and, at the same time, the
correlation loss effectively pulls the deep feature vectors of the
same class to be coincident with the class direction Wyi . With
the joint supervision, the (angular) margin between classes
would be enlarged. Hence the discriminative power of the
deeply learned features can be highly enhanced.

B. The Network Architecture and Back-Propagation Training

Deep correlation feature learning (DCFL) network applies
joint softmax and correlation loss function on the top of
deep convolutional neural network to learn the deep activation
features for face verification. The objective of DCFL network
is to increase the intra-class correlation affinity while reducing
the inter-class correlation affinity of the deep features.

TABLE I
MODEL ARCHITECTURE. str2 DENOTES STRIDE 2. MaxP DENOTES

MAX-POOLING. [3× 3, 64]× 2 DENOTES 2 CASCADED CONVOLUTIONAL

LAYERS WITH 64 FILTERS OF SIZE 3X3. THE RESIDUAL UNITS ARE SHOWN

IN DOUBLE-ROW BRACKETS.

Model ResNet-1 (32-layers) ResNet-2 (64-layers)

Block1 [3× 3, 64]× 2
MaxP, [2× 2], str2

[3× 3, 64]× 1, str2[
3× 3, 64
3× 3, 64

]
× 3

Block2

[
3× 3, 64
3× 3, 64

]
× 1

[3× 3, 128]× 1
MaxP, [2× 2], str2

[3× 3, 128]× 1, str2[
3× 3, 128
3× 3, 128

]
× 8

Block3

[
3× 3, 128
3× 3, 128

]
× 2

[3× 3, 256]× 1
MaxP, [2× 2], str2

[3× 3, 256]× 1, str2[
3× 3, 256
3× 3, 256

]
× 16

Block4

[
3× 3, 256
3× 3, 256

]
× 5

[3× 3, 512]× 1
MaxP, [2× 2], str2

[3× 3, 512]× 1, str2[
3× 3, 512
3× 3, 512

]
× 3

Block5
[
3× 3, 512
3× 3, 512

]
× 3 -

FC 1024 512

Algorithm 1 Deep Correlation Feature Learning (DCFL)
Input: Training data {xi}. Initialized parameters θC in

convolutional layers, Weight parameters W in the loss layer.
Hyerparameter λ and learning rate µt. The index of iteration
t← 0
Output: The learned parameters θC and W
1: while not converge do
2: t← t+ 1
3: Compute the joint loss by Lt = LtS + λLtC
4: Compute the BP error ∂Lt

∂xt
i
=

∂Lt
S

∂xt
i
+ λ

∂Lt
C

∂xt
i

5: Update W by W t+1 =W t − µt ∂L
t
S

∂W t

6: Update θC by θt+1
C = θtC − µt

∑
i
∂Lt

∂xt
i

∂xt
i

∂θtC

7: end while

For the network architecture, DCFL uses state-of-the-art
ResNet [14], in which the skip-connection operation allows
the training of much deeper network than the conventional
architecture. We adopt a 32-layers ResNet architecture in
our experiments, sharing similar configurations with model
provided by Wen et al. [13] as detailed in the left column of
Table I. Specifically, the network contains 27 convolutional
layers, 4 pooling layers, 1 fully connected layer, and the
proposed joint supervision layer. In convolution layers, the
filter size is 3×3, and both the stride and padding are set to 1,
followed by the PReLU [19] nonlinear units. The max-pooling
grid is 2×2 and the stride is 2. For simplicity, we do not adopt
the bottleneck architecture. Batch normalization is removed to
save the the GPU memory. The last 1024-dimensional fully-
connected layer is extracted as the deep activation feature
and the joint supervision functions are imposed on it. The
experiments are implemented by Caffe library [20] with our
own modifications. Our network is optimized by standard SGD
with 256 mini-batch, and the momentum and weight decay are
set to 0.9 and 0.0005 respectively. Then the hyper-parameter
λ is fixed to 0.003. Our initial learning rate is set to 0.1 and is
divided by 10 at 30k, 40k, 50k iteration. The total iteration is
60k. For data preprocessing, we perform the mean substraction
and scale operation. The input images are randomly mirrored
with 0.5 probability.

The backpropagation learning algorithm is detailed in Al-
gorithm 1.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate our DCFL method on two
famous benchmarks for the face verification in the wild,
namely LFW and YTF datasets. Both datasets are collected
under the unconstrained conditions and have been widely used
for face recognition in image and video. LFW dataset contains
13,233 web-collected images from 5749 subjects, with large
unconstrained variations in pose, expression and illuminations.
Following the standard protocol of unrestricted with labeled
outside data [21], we test on 6,000 face pairs and report the
verification accuracy. YTF dataset consists of 3,425 videos of
1,595 subjects, with an average of 2.15 videos per person.
The clip durations vary from 48 frames to 6,070 frames,
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Fig. 2. Example images of our LFW dataset. The images are aligned by the
centers of two eyes and the mouth, and resized to 104×96.

with an average length of 181.3 frames. Again, we follow
the unrestricted with labeled outside data protocol and report
the verification results on 5,000 video pairs. We crop and align
the images according to the centers of two eyes and mouth as
shown in Fig. 2, and we train the ResNet with the CASIA-
Webface [22] database of 494,414 near-frontal faces from 10,
575 subjects.

TABLE II
THE COMPARATIVE ACCURACY ON LFW AND DATABASE WITH VARIOUS

TRAINING SETS

Methods #Train #Net LFW Accuracy YTF Accuracy
Deepface [8] 4M 3 97.00% 91.4%
DeepID2 [9] 0.2M 1 95.12% –
DeepID2+ [9] 0.2M 25 99.47% 93.2%
FaceNet [11] 200M 1 99.63% 95.1%
VGG-Face [10] 2.6M 1 98.95% 97.3%
Baidu [23] 1.3M 1 99.13% –
Center-loss [13] 0.7M 1 99.28% 94.9%
NAN [24] 3M 1 – 95.72
Baseline A 0.5M 1 97.13% 90.5%
Baseline B 0.5M 1 98.81% 93.5%
Baseline C 0.5M 1 99.11% 93.9%
DCFL 0.5M 1 99.32% 95.2%
DCFL (64-layers) 4.7M 1 99.55% 96.06%

Table II compares our DCFL method with recently reported
face verification methods on LFW [25] and YouTube Face [26]
datasets. Besides the verification accuracy, we also compare
different methods in terms of the number of training images
and the number of networks fused for their overall training.
The results show that the proposed method performs better
than several well-known deep face models and its performance
is comparable to the DeepID-2+ method fused by 25 networks.
Compared with the FaceNet of highest accuracy, the proposed
DCFL network is trained using 400× less training data. On
the YTF video database, our method also outperforms many
recent algorithms and is only behind the NAN method [24]
which uses aggregation module for feature averaging, and the
VGG Face [10] which depends on an additional discriminative
metric learning on YTF.

For a fair comparison, we also train the 32-layer ResNet
with three baseline models as follows.

• Baseline Model A: deep feature learning supervised by
the softmax loss

• Baseline Model B: deep feature learning jointly super-
vised by the combination of the softmax loss and the
contrastive loss

• Baseline Model C: deep feature learning jointly super-
vised by the softmax loss and the center loss

From the results in Table II, we have made following
observations:

1. Model A performs worst among all the tested models.
Its softmax loss derives a separable deep features, and
yields a reasonably good performance compared to the
conventional “shallow” methods. Its accuracy is even
slightly better than the deepface method trained on 4M
images, which validates the advantage of the ResNet
architecture used in our experiment.

2. Model B and model C outperform the model A by
a large margin, improving the performance by about
2–3%. This suggests that the joint supervision signals
are helpful to enhance the discriminative power of the
conventional softmax loss. However, the selection of
appropriate pairs and the updating of the class centroids
make the training procedure become very tricky.

3. DCFL performs better than model C notably, which
shows that the advantage of the correlation loss over
the center loss in the deep CNNs. This indicates that the
angularly distributed deep features derived by correlation
loss is more suitable for the joint softmax training.

4. Compared to the state-of-the-art results on the two
databases, the proposed DCFL (much less training data
and number of networks) is consistently among the top-
ranked sets of approaches, outperforming most existing
results in Table II.

To pursue better performance, we further apply DCFL
to a deeper ResNet architecture with a larger training set.
Specifically, the architecture of a 64-layer ResNet is detailed
in Table I, which is trained on the cleaned training set of Ms-
celeb-1M database [27] with 4.7M images from 60K subjects.
Finally, the accuracy is boosted to 99.55% and 96.06% on the
LFW and YTF databases, respectively.

V. CONCLUSION

In this paper, we have proposed a new loss function called
“correlation loss”, which aims to enhance the intra-class
correlation of the deeply learned features. To jointly training
the DCFL network by the softmax loss and the correlation loss,
the discriminative power of the deeply learned features can be
highly enhanced for unconstrained face verification. Extensive
experiments on standard LFW and YTF face verification
benchmarks have convincingly demonstrated the effectiveness
of the proposed approach. State-of-the-art unconstrained face
verification performance is achieved by the proposed DCFL
method with a 64-layer ResNet.
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